CHAPTER 01 Overview

SLAGS 3 A Boost in Research on Slags: A Doubling in Publications from Literature since 2003
 Rob Boom, Shahid Riaz and Kenneth Mills

Phase Equilibria and Composition, Ionic Structure

13 Partition of Impurities within Titania Slag
 Krzysztof Borowiec

23 Analysis of the Air-Cooling Process of Basic Slags
 Dirk Durinck, Peter Tom Jones, Bart Blanpain, Patrick Wollants and Sander Arnout

33 Modification Study of a Steel Slag to Prevent the Slag Disintegration after Metal Recovery and to Enhance Slag Utilization
 Qixing Yang, Fredrik Engström, Bo Björkman and Daniel Adolsson

43 Vitrified Bottom Ash Slag from Municipal Solid Waste Incinerators - Phase Relations of CaO-SiO2-Na2O Oxide System
 Zhan Zhang, Yanping Xiao, Yongxiang Yang, Rob Boom and Jack Voncken

51 The Link between Solidification of High-Titania Slag and Subsequent Comminution
 Petrus Christian Pistorius and Hanline Kotze

61 Ultrasonic Propagation in Molten Lithium-, Sodium-, and Potassium-Silicates
 Yutaka Shiraishi, Masaki Yamashita, Yuichiro Tokunaga, Atsushi Tanaka, Tohru Kanno and Katsutoshi Takano

71 Phase Equilibria Studies in the Slag System
 TiO_x-CaO-MgO-Al2O3-SiO2 at Carbon Saturation
 Baojun Zhao, Evgueni Jak and Peter Hayes
83 Phase Equilibria of Fayalite-Based Slags for the Slag Cleaning Process in Copper Production
Hector Henao, Peter Hayes, Evgueni Jak, C. Pizarro, Jonkion Font and Alex Moyano

93 Investigation of Phase Equilibria of Copper Smelting Slags in the FeO-Fe₂O₃-SiO₂-CaO-MgO-Al₂O₃ System at Fixed Oxygen Potential
Hector Henao, Peter Hayes, Evgueni Jak, David George-Kennedy Collin Nexhip

101 Melting Phenomenon of Manganese Bearing Ores
Sean Gaal, Eli Ringdalén, Danil Vaganov and Merete Tangstad

111 Liquidus Temperatures in Calcium Ferrite Slags Equilibrated with Molten Copper
Stanko Nikolic, Gerardo Alvear, Peter Hayes and Evgueni Jak

123 In-Situ Measurements of the Kinetics of Spinel Growth on MgO-Slag (CaO-Al₂O₃-SiO₂) Couples
Brian Monaghan and Sharon Nightingale

133 Solubility of MgO in CaO-Based Slags
Sung-Mo Jung, Chang-Hee Rhee and Dong-Joon Min

143 Experimental Investigation of Phase Equilibria of Subsystems in the MnO-SiO₂-Al₂O₃-Mns System
Dae-Hee Woo, Youn-Bae Kang, Henri Gaye and Hae-Geon Lee

149 The High Temperature Raman Spectroscopy and Ion Cluster Theory for Metallurgical Slag and Magma
Guo-Chang Jiang, Yong-Quan Wu and Jing-Lin You

Physical Properties

161 Surface Tension Measurements of Molten Coal Ash Slags under Oxidising and Reducing Gas Atmosphere
Tobias Melchior and Michael Mueller

171 Thermal Conductivity of the Na₂O-SiO₂ and the CaO-Al₂O₃-SiO₂ Melts Measured by Hot-wire Method
Youngjo Kang and Kazuki Morita

183 High Temperature Viscosity Measurements for Slags at Controlled Oxygen Potential
Baojun Zhao, Evgueni Jak and Peter Hayes

195 Viscosity and Structure of Quaternary Aluminosilicate Melts
Sohei Sukenaga, Yoshinori Yamaoka, Noritaka Saito and Kunihiro Nakashima

205 Viscosity Measurements and Estimation of High TiO₂ Containing Blast Furnace Slags
Rong Wang, Min Guo, Mei Zhang and Xidong Wang
Experimental Study and Modelling of Viscosity of Chromium Containing Slags
Lauri HOLAPPA and Lasse FORSBACKA

Viscosity and Electric Conductivity of Copper Slag at Controlled Oxygen Potential
Baojun ZHAO, Evgeni JAK, Peter HAYES Jonkion FONT and Alex MOYANO

Experimental Determination of the Effect of Na$_2$O on the Viscosity of Molten Slags
Hyuk KIM, Dong Joon MIN and Young Seok LEE

The Viscous Behavior of High Al$_2$O$_3$ Containing Blast Furnace Type Slags
Hyuk KIM, Dong Joon MIN, Young Seok LEE and Joo Hyun PARK

Thermodynamic Properties and Slag/Metal Phase Interaction

Thermodynamics of Manganese Oxide in CaO-SiO$_2$-MgO$_{sat}$-Cr$_2$O$_3$-MnO Slags for the Production of High Mn Stainless Steel
Marie-Aline VAN ENDE, Muxing GUO, Peter JONES, Bart BLANPAIN and Patrick WOLLANTS

Thermodynamic Impact of Molten Slags on the Formation Behavior of MgO-Al$_2$O$_3$-TiO$_x$ Inclusion in Steel Melts
Joo Hyun PARK, Sang-Beom LEE and Henri GAYE

Control of Cr-Loss to the Slag Phase in High Alloy Steelmaking
Haijuan WANG, Seshadri SEETHARAMAN, Mselly NZOTTA and Nurni VISWANATHAN

Phosphide and Sulphide Capacities of Ferromanganese Smelting Slags
Habib SARIDIKMEN, Cevat Serdar KUCUKKARAGOZ and Rauf Hurman ERIC

Thermodynamic Studies of MgO Saturated Eaf Slag
Kyei-Sing KWONG, James BENNETT, Rick KRABBE, Arthur PETTY and Hugh THOMAS

Thermodynamic Behavior of Transition Metal (Cr, Ti, Nb, V) Oxides in Molten Slags
Baijun YAN, Jiayun ZHANG and Qing SONG

Thermodynamic Properties and Structural Assessment of Boron Oxide in CaO-SiO$_2$ and CaO-SiO$_2$-CaF$_2$ Slags Systems for Silicon Refining
Leandro TEIXEIRA and Kazuki MORITA

Thermodynamic Activity of Chromium, Vanadium Oxide in CaO-SiO$_2$-MgO-Al$_2$O$_3$ Slags
Pengli DONG, Seshadri SEETHARAMAN and Xidong WANG
337 Sodium Solubility in Molten Silicates
Romain Mathieu, Guy Libourel, Etienne Deloule and L. Tissandier

345 Effect of Activity Coefficient on Phosphate Stability in Molten Slags
Moon Kyung Cho and Dong Joon Min

Mathematical Modelling

353 New Developments on Slag Modelling at Arcelormittal Maizières
Jean Lehmann, Nicolas Bontems, Marie Simonnet, Pascal Gardin and Ling Zhang

365 Prediction of Physicochemical Properties in Multicomponent Molten System
Kuo-Chih Chou

373 Estimation of Physical Properties of Molten Mold Flux by Neural Network Computation
Masahito Hanao, Masayuki Kawamoto, Masashi Nakamoto and Toshihiro Tanaka

383 Physicochemical Properties of Ternary Slag Systems - A Modelling Approach
Lijun Wang, Seshadri Seetharaman and Kuo-Chih Chou

391 Modelling Cr Containing Slags for PGM Smelting
Ling Zhang, Shouyi Sun and Sharif Jahanshahi

403 Application of the Generalised Central Atom Model to Oxide Slags
Ling Zhang and Jean Lehmann

413 Estimation of Viscosities for High Temperature Silicate Melts
Qifeng Shu, Jiayun Zhang and Jie Huang

423 A Model and Database for the Viscosity of Molten Slags
Sergei Decterov, Nicholas Grundy and Arthur Pelton

433 Viscosity Model for Slags in the Al₂O₃-CaO-'FeO'-K₂O-Na₂O-MgO-SiO₂ System
Evgueni Jak

449 Thermodynamic Model and Database for Gaseous Species in Molten Oxide Slags
Youn-Bae Kang and Arthur Pelton

459 Thermodynamic Modeling of Pyrometallurgical Oxide Systems Containing Mn Oxides
Youn-Bae Kang and In-Ho Jung

473 Thermodynamic Modelling of the Al₂O₃-CaO-FeO-Fe₂O₃-PbO-SiO₂-ZnO System with Addition of K and Na with Metallurgical Applications
Evgueni Jak, Peter Hayes, Arthur Pelton and Sergei Decterov
491 Applicability of Commercially Available Slag Models for Steel Making Slag
Somnath BASU, Ashok Kumar LAHIRI and Seshadri SEETHARAMAN

499 Sulfide Capacities of CaO-MgO-MnO-AlO_{1.5}, MgO-MnO-AlO_{1.5} and CaO-MgO-MnO-AlO_{1.5} Slags
A. YAHYA and Ramana REDDY

507 Computational Modelling of Oxides’ Surface Tensions in Secondary Metallurgy and Continuous Casting
Eetu-Pekka HEIKKINEN, Jaana RIIPPI, Timo FABRITIUS, Risto PAJARRE and Pertti KOUKKARI

Processing of Slags

517 Glassy Products as Construction Material Out of Mineral Slags
Heiko HESSENKEMPER

523 Smelter Slag - Seeking Market Opportunities & Carbon Credits and in a Changing World
Michael SUDBURY

535 High Temperature Processing of Fly Ash Slag for the Production of Environmentally Safe Materials
Zaid GHOULEH, Mihaela ISAC, R. I. L. GUTHRIE, P. CARABIN and J. A. KOZINSKI

547 A Study on Kinetics of Slag Corrosion of Alumina Refractory
Xidong WANG, Mei ZHANG and Min GUO

555 Design of Porous Glass & Slag Materials and its Application to Refining
Toshihiro TANAKA, Takeshi YOSHIKAWA and Masanori SUZUKI

565 The Mechanisms of Electrochemical Vaporization from Sodium Silicate Melt Heated by Transfer Thermal Plasma of Ar
Kazuhiro NAGATA, and Kei-Ichiro KASHIMURA

577 Removal of Fluorine from Slags
Steven WRIGHT, Shouyi SUN and Sharif JAHANSHAHI

589 Pyrohydrolysis of Sodium Fluoride Containing Silicate Slag from Spent Potlining
Vladimir BLINOV, Tor GRANDE and Harald A. ØYE

Metal Recovery

601 Development of Innovative Solutions for Recovery of Iron from Steelmaking Slags
Anna SEMYKINA, Volodymir SHATOKHA and Seshadri SEETHARAMAN

613 Pyrometallurgical Recovery of Chromium from Slags
E. VARDAR and Rauf Hurman ERIC
Recovery of Iron from Copper Flash Smelting Slags
Dusan Busolic, Fernando Parada, Roberto Parra, Erwin Urday, José Palacios, Mitsutaka Hino, Felipe Cox, Armando Sánchez and Mario Sánchez

CHAPTER 02
OTHER MELTS AND LIQUIDS

Properties

631 Behaviour of Cr in Cu-Fe-Ni-S Mattes
Steven Wright, Sharif Jahanshahi and Shouyi Sun

643 Thermodynamic Properties of C₄mim[Tf₂N] Ionic Liquids
Mingming Zhang and Ramana Reddy

Modelling

653 Molecular Dynamics Calculation of Surface Tension Using the Embedded Atom Model
David Belashchenko, N. Kravchunovskaya and Oleg Ostrovski

663 Surface Properties of the Pb-O-Bi System
Rada Novakovic, Donatella Giuranno and Enrica Ricci

673 Models for the Thermodynamic Properties, Density and Viscosity of Molten Salts
Christian Robelin, Arthur Pelton, Patrice Chartrand and Gunnar Eriksson

685 Investigate of Oxygen Adsorbed on the Iron (1 0 0) Surface from First Principles Calculations
Weimin Cao, Anna Delin, Taishi Matsushita and Seshadri Seetharaman

CHAPTER 03
INTERFACIAL AND TRANSPORT PHENOMENA

Interfacial Phenomena

693 Reactions between Solid Metals and Molten Slags
Oleg Ostrovski and Gavin Parry

703 Interfacial Phenomena between Molten Steel and Slag
Taishi Matsushita, Takashi Watanabe, Seshadri Seetharaman and Kusuhiro Mukai

715 Modeling of the Surface/Interfacial Tension for the Ladle Refining of Silicon Metal Process
Kai Tang, Jan Erik Olsen, Stein Johansen and Leiv Kolbein sen

727 The Interface in Slag Reactions; A Moving Target
Kenneth Coley, Fuzhong Ji, Geoffrey Brooks, Akbar Rhamdahni, Yuhua Pan and Subagyo

Kinetics Transport Phenomena and Process Simulation

737 A Kinetic Model Applied to Pig Iron Desulfurization in the Kanbara Reactor
Carlos Da Silva, Itavahn Da Silva, Versiani Leão, Varadarajan Seshadri, Leandro Rocha and Odair Kirmse
751 Some Aspects of Slag-Metal Interaction in a Two Plume Stirred Ladle
Carlos DA SILVA, Itavahn DA SILVA, Versiane LEÃO, Varadarajan SESHADRI, Osvaldo NETO and Vitor LAMBERTUCCI

763 Applications of Computational Science and Engineering to Molten Slag Related Issues in Steelmaking
Tooru MATSUMIYAMA

775 Effect of a Simulated Slag Phases on the Mixing and Mass Transfer Rates in a 0.2-Scale Creusot-Loire Uddeholm (CLU) Converter Model
A. CHAENDERA and Rauf ERIC

795 An Advance Mathematical Model of the Slag Phase in a Gas-stirred Ladle
Mansour AL-HARBI, H. V. ATKINSON and S. GAO

803 Kinetics Study of Droplet Swelling in BOF Steelmaking
Elaine CHEN and Kenneth COLEY

815 A New Method for Determining Chemical Composition of Refining Slag in the Ladle Furnace
Jan FALKUS, Tomasz KARGUL and Pawel DROZDZ

833 The Interfacial Convection in Two Immiscible Fluids and its Effect on Mass Transport
Piotr SCHELLER

CHAPTER 04
Iron, Steel and Ferroalloy Making

847 Oxygen Control during Manufacturing of CeS-Based Grain Refiners for Steel
Erlend NORDSTRAND, Øystein GRONG, Casper VAN DER ELIK and Sean GAAL

857 Optimization of Slag Composition in Hot Metal Dephosphorization
Shin-Ya KITAMURA

865 Chemical Reactions at Phase Interfaces of Slag/Inclusions and Steel/Refractories
Jung-Hwan SOHN, Sang-Chae PARK, Jin-Hong PARK, Sung-Mo JUNG, Henri GAYE, Hae-Geon LEE and In-Ho JUNG

875 Slag Engineering Aspects of the Crisp Steelmaking Technology
Mansoor BARATI, Jianghua LI, Frank WHEELER, Gordon YAKOV, Frank ATKINSON and Stephan BROEK

887 Iron and Steel Industry Development and Technological Innovation in China
Kuangdi XU
895 Slag and Iron Droplet Formation during Desulphurisation of Hot Metal - Industrial Investigation
Marianne MAGNELOV, Johan ERIKSSON, Johan BJÖRKVALL, Jan-Olov WIKSTROM, Leif NILSSON and Jonas DRUGGE

903 Role of Solid CaO in FeO-CaO-SiO2-P2O5 Multi Phase Flux at Hot Metal Dephosphorization Temperature
Xiao YANG, Reita SAITO, Tasuku HAMANO, Hiroyuki MATSUURA and Fumitaka TSUKIHASHI

913 Rate Determining Step in the Gaseous Reduction of Pure and Doped Iron Oxide
Abdel-Hady EL-GEASY

923 Slag Control for Improved Steelmaking Competitiveness
M. HASEGAWA, Masa IWASE, Yin Dong YANG and Alex MCLEAN

933 Investigation of the Wetting Characteristics of Liquid Fe-19%Cr-10%Ni Alloys on the Alumina and Dolomite Substrates at 1873 K
Joonho LEE, Minsoo SHIN and Joo-Hyun PARK

939 Composition Control of Reoxidation Products in Silicon Killed Steel
Akihito KIYOSE and Wataru YAMADA

947 Significant Mineralogical Differences between Basic Test and Production Iron Ore Sinters with Equal Chemical Composition
Pekka TANSKANEN, Kimmo KINNUNEN and Timo PAANANEN

957 Study of the Effect of Flux Type and Oxygen Blowing on Simultaneous Removal of Phosphorus and Sulphorus from Molten Iron
Hamed ABDEYAZDAN, Hosein EDRIS and Mohammad HASAN ABBASI

967 The Steel Eco-Cycle – A Sustainable Manufacture and Use of Steel
Birgitta LINDBLAD and Elisabeth NILSSON

973 Reduction of Iron Oxides with Carbon Saturated Liquid Iron
Miroslaw KARBOWNICZER and Piotr MIGAS

983 The Modification and Minimization of Spinel(MgO•Al2O3) Inclusions Formed in Ti Added Steel Melts
Seon-Hyo KIM, Chang-Woo SEO, Sung-Koo JO, Min-Oh SUK and Sun-Min BYUN

993 Slags in the Production of Wrought Iron
Jakob LAMUT, Barbara LAMUT and Matjaž KNAP

999 Treatment of Hot Metal and Liquid Steel with Waste Materials from the Aluminum Industry
Yin Dong YANG, Flora CHANG, Alex MCLEAN, Masa IWASE and M. HASEGAWA
1013 Solidification of Casting Steel Parts with Half Carbon, Type 55r
Ariana RODRÍGUEZ and Isnel RODRÍGUEZ

1023 Dephosphorization in BOF Steelmaking
Konstantin SIPOS and Esteban ALVEZ

Mold Fluxes and Casting

1031 Investigation of the Melting Behaviour of Mould Powders
Nathalie KÖBLI, Irmtraud MARSCHALL and Harald HARMUTH

1041 Development of Mould Flux for High Speed Thin Slab Casting
Jan KROMHOUT, Masayuki KAWAMOTO, Masahito HANAO and Rob BOOM

1053 Investigation of Mold Fluxes Properties Used in the Continuous Casting of Steels
Jeferson KLUG, Nestor HECK and Antonio VILELA

1061 Development of the Mould Slag Film and its Impact on the Surface Quality of Continuously Cast Semis
Bridget STEWART, Neil JONES, Keith BAIN, Mike MCDONALD, Robert BURNISTON, Mick BUGDOL and Vince LUDLOW

1073 The Influence of Carbonaceous Material on the Melting Behavior of Mold Powder
D. SINGH, P. BHARDWAJ, Yin Dong YANG, Alex MCLEAN, M. HASEGAWA and Masa IWASE

1083 The Effect of Na2O on the Viscosity of Mold Flux
Yosuke MATSUZONO, Takashi WATANABE, Miyuki HAYASHI, Kazuhiro NAGATA, Taishi MATSUSHITA and Seshadri SEETHRAMAN

1091 Effect of Crystalline Morphology on Heat Transfer through Mould Flux
Miyuki HAYASHI, Kazuki MATSUO, Hideko NAKADA and Kazuhiro NAGATA

1101 Effect of Al2O3 and CaF2 on the Solidification of Mould Slags and the Heat Transfer
Stefan LACHMANN and Piotr SCHELLER

1111 Development of a Laboratory Method for Characterisation of Mould Powder Melting Rate
Carl-Åke DÄCKER, Christer EGGERTSSON and Johan LÖNNQVIST

1121 Melting Process of Mold Fluxes: In situ Investigation
Riccardo CARLI, Carlo RIGHI and Monica DAPIAGGI

1129 Layers in the Slag Film between Steel Shell and Mould in Continuous Casting of Stainless Steel
Paavo HOOLI
Nonferrous Pyrometallurgy

1139 Fluxing Options in the Direct-to-Blister Copper Smelting
 Pekka Taskinen and Ilkka Kojo

1153 Nickel, Copper and Cobalt Distribution and Equilibria in
 Anglo Platinum Furnace Slags
 Lesley Andrews and Chris Pistorius

1163 Initial Melting and Reduction of Ore and Fluxes at the Top
 of the Coke Bed during SiMn-Production
 Eli Ringdalen, Sean Gaal and Merete Tangstad

1173 Ilmenite Processing in Thermal Plasma during Electric
 Discharge Mechanical Milling
 Damon Bishop, Brian Monaghan and Andrzej Calka

1183 Viscosity of Alumino-Olivine Slags
 Juan Cabrera, Gabriel Riveros and Andrzej Warczok

1193 Continuous Fire Refining of Blister Copper
 Andrzej Warczok and Gabriel Riveros

1203 Modelling of Copper Content Variation during “El Teniente”
 Slag Cleaning Process
 Christian Goñi and Mario Sánchez

1211 Mechanism of Buildup Formation in an Electric Furnace for
 Copper Slag Cleaning
 Andrzej Warczok, Jonkion Font, Víctor Montenegro, Carlos
 Caballero and Alex Moyano

1221 Efficiency of Copper Recovery from a Slag in the Large
 Electric Furnace
 Carlos Caballero, Alex Moyano, Fernando Rojas, Andrzej
 Warczok and Jonkion Font

1231 The Copper Losses in the Slags Obtained by Plasma
 Reduction Process
 Ivan Imris and Alexandra Klenovcanova

1241 Isasmelt™ Slag Chemistry and Copper Losses in the Rotary
 Holding Furnaces Slag at Ilo Smelter
 Leopoldo Mariscal and Enrique Herrera

1251 CFD Model for the Steady and Unsteady State Analysis of a
 Gas Mixer for the Caletones Off-Gas Handling System
 Lowy Gunnewiek, Claudio Muñoz and Máximo León

1263 Molten - Layer Reactor for Copper Smelting and Converting
 Igor Wilkomirsky, Roberto Parra, Fernando Parada,
 Eduardo Balladares, Carlos Caballero, Andrés Reghezza,
 Jorge Zúñiga, Hector Leiva and Ivan Moreno

1273 Recovery of Iron-Molybdenum Alloy from Copper Slags
 Fernando Parada, Roberto Parra, Toshiki Watanabe, Mitsutaka
 Hino, José Palacios and Mario Sánchez
1281 Recovery of Molybdenum from Roasted Copper Slags
Dusan BUSOLIC, Fernando PARADA, Roberto PARRA, Arcadio ULLOA, Juan Carlos CARRASCO, José PALACIOS, Andrés REGHEZZA, Carlos CABALLERO, Jorge ZÚÑIGA and Mario SÁNCHEZ

Vessel Integrity and Refractories
1289 Thermal Shock Behaviors of MgAlON and MgAlON-BN Composite Refractories
Zuotai ZHANG, Xidong WANG, Mei ZHANG, Wenchao LI and Seshadri SEETHARAMAN

1301 Managing Slag Composition to Protect Pyrometallurgical Vessel Integrity
Carlos DÍAZ

1311 Interfacial Reactions between Coal – and Petcoke – Slags and Refractory Materials
Jinichiro NAKANO, Sridhar SEETHARAMAN, James BENNETT, Kyei-Sing KWONG and Tyler MOSS

1323 Molten Slags Formed during Gasification of Carbon Feedstock and their Interaction with High Chrome Oxide Refractory Liners of Air Cooled Slagging Gasifiers
James BENNETT and Cynthia POWELL

1335 Freeze Lining Formation of a Synthetic Lead Slag
Mieke CAMPFORTS, Evgueni JAK, Tim VAN ROMPAEY, Bart BLANPAIN and Patrick WOLLANTS

1347 The Nodal Wear Model in the Analysis of Wear and Corrosion in Refractory Materials by Molten Phases
Luis Felipe VERDEJA, José SANCHO, Javier MOCHÓN and Roberto PARRA

1357 Non-Destructive Testing (NDT) Techniques for Determination of Refractory Deterioration in Smelting Furnaces
Pawel GEBSKI, Ehsan SHAMELI and Afshin SADRI

1373 Ionic Melts Properties and their Use in the Electrowinning of Refractory Metals
Frédéric LANTELME and Henri GROULT

1383 Salt Extraction Process - A Novel Route for Metal Extraction for Chromium Recovery from Slags and Low-grade Chromite Ores
Xinlei GÉ, Olle GRINDER and Seshadri SEETHARAMAN

1393 Solubility of Alumina in Molten Chloride-Fluoride Melts
Yanping XIAO and Kai TANG

1403 Phase Diagrams, Structural and Thermodynamic Properties of Molten Salt Solvents for the Industrial SO$_2$-Oxidation Catalyst
Rasmus FEHRMANN, Soghomon BOGHOSIAN, Hind HAMMA-CUGNY and Jacques ROGEZ
1411 Lanthanide-based Halide Systems: A Fascinating Route from Multitechnique Data Acquisition to Data Prediction
Marcelle GAUNE-ESCARD, L. RYcerz, S. Gadzuric, W. Gong,
M.F. Butman and S.A. Kuznetsov

1425 Electrodeoxidation of Solid Fe₂O₃ In Molten CaCl₂ to Produce Iron
Geir Haarberg, Odne Burheim, Derek Fray and Stewart Male
CHAIRMAN’S ADDRESS

The proceedings of the VIII INTERNATIONAL CONFERENCE ON MOLTEN SLAGS, FLUXES AND SALTS -MOLTEN 2009 are now in your hands. This information comes from several countries interested in high-temperature processes, fundamental research, and its applications. You will also find important information that, we expect, will be a useful reference in your studies, research and industrial work.

Molten, is a conference that has been held around the world for more than twenty five years, from Halifax, Canada (1980), to Lake Tahoe, USA (1984), Strathclyde, United Kingdom (1988), Sendai, Japan (1992), Sydney, Australia (1997), Stockholm/Helsinki, Sweden/Finland (2000), Cape Town, South Africa (2004). This is the very first time in South America, so the Organizing Committee feels very proud of hosting this event in Santiago, Chile.

South America and particularly Chile, is amazingly rich in mineral resources and for this reason, local economies are highly dependent on mining production. Hence, the topics in these proceeding are also very useful for our development and a great reason to meet here.

When organizing meetings of this nature, organizers always wonder whether the quality and number of presentations will be enough to meet the expectations of the attendees. We expect these proceedings to be also an important document for industry professionals, universities, and research centres. Despite the unintended potential mistakes, we expect this information will serve the purpose of a wide range of people.

The turbulent economic times currently affecting the world in general and our metallurgical industry in particular should not be overlooked, especially after the dramatic metal price increases during the last few years that made most mining economist feel at ease. Now, most of them are unable to ascertain how long this negative scenario will really be. Yet, this situation should be seen as a good opportunity to thoroughly revisit the way of doing business in the economic world and therefore, to find new and improved ways to contribute to our main goal, that is, our development as human beings. Thus, undoubtedly this is our opportunity to innovate.

Now, please, take a look at the map and see where we are. We are located in the southern most part of the world, in a new
continent with a short history, unlike other countries around the world where you came from. Latin America as a continent has experienced a fast growth rate in the last few years, and our people and institutions are striving to further develop the economy and improve the social aspects of our community. Chile in particular, is an important mining country, which due to its shape and location in the world map, faces unique challenges that has successfully faced in this area. Ferrous and non ferrous metals are quite important for our future and you will see how relevant minerals are for our development.

This is a good opportunity to share scientific and technical results and discuss ideas as to how to improve methods, techniques, and treatments related to high-temperature processes. It is time to grow together. Let us fully leverage this opportunity.

Mario SÁNCHEZ
Chairman
VIII International Conference on Molten Slags, Fluxes and Salts - MOLTEN 2009
PREFACE

Following the tradition of preceding MOLTEN conferences, the MOLTEN 2009 call for papers received a great response from the international academic and industrial communities. This proves that high temperature materials processing continues being fertile ground for scientific advances and for technology development and improvement.

In the MOLTEN 2009 proceedings, the reader will find submissions from authors from 32 different countries from nearly all continents. The 139 papers presented in have been grouped into the following sections:

- Slags (61)
- Other Melts and Liquids (6)
- Interfacial and Transport Phenomena (13)
- Industrial Processes (53)
- Molten Salts (6)

This is, obviously, not a strict classification.

The papers on slags account for about one third of the total. In this case, the editors thought that arranging these papers in subgroups, as shown in the proceedings table of contents, would facilitate the location of specific topics.

In an industrial perspective, most of the MOLTEN 2009 papers discuss either basic or technical aspects relating to the production of iron, steel or ferroalloys; a clear indication of the importance of these materials to sustain the accelerated economic development that countries in several regions of the world, in particular Asia, have been experiencing in recent years.

Modeling work in support of both fundamental research and technology development and improvement shows that researchers are using a two-pronged approach to the investigation of specific topics. This is a field of work that will probably further expand in the immediate future. The judicious use of mathematical modeling to study complex systems and to improve industrial processes, with continuous validation and revision of model predictions against actual physical data, is a most promising tool in high temperature work.

A concern for the environment and the need to achieve industrial sustainability is openly discussed in a few of the MOLTEN 2009
papers. In an attempt to highlight the importance of this matter, the organizers of MOLTEN 2009 selected two of these papers for plenary session presentations.

The editors are confident that the MOLTEN 2009 proceedings will prove a valuable addition to the bookshelves of academic and practicing high temperature researchers alike around the world.

THE EDITORS
January, 2009
ACKNOWLEDGEMENTS

We were proud to host the VIII International Conference on Molten Slags, Fluxes and Salts – MOLTEN 2009 in Chile, bringing it to South America for the first time in its 28 year history, and welcome over 250 delegates to Santiago. Producing such a complex event has been a rather challenging task which has required a lot of disciplined effort from all of us.

Produce such an event as MOLTEN 2009 has required a lot of effort, commitment and hard work from many people from different countries. This Conference would not have been possible without all those people who have put in long hours of hard work, dedication, energy and talent. We thank them most sincerely for their contributions of time and expertise to this project. We are extremely grateful to all those involved in the Conference organisation and particularly to:

- The authors for their invaluable contributions, monumental efforts of meeting deadlines, and willingness to travel across the world in order to share their knowledge and experience. With their exceptional articles we were able to bring the best of their knowledge to Chile. All papers in these proceedings were peer reviewed and we thank the authors for the willingness to invest their personal time and correct the articles, providing insightful comments thus ensuring the quality of this publication.
- Technical reviewers for reviewing the papers and for their contribution to the high technical level of the Conference.
- The following sponsors (as of 6 January 2009 and in alphabetical order) for their generous support:
 - Social Sponsors: Compañía Siderúrgica Huachipato, Hatch, MIRS S.A.
 - Institutional Sponsors: Ambassade du France au Chili, Embassy of Canada in Chile; Consejo Minero, Embassy of the People’s Republic of China in Chile, Sociedad Nacional de Minería - SONAMI.
• The Gecamin team for their meticulous planning, hard work, professionalism and continuous commitment to making this Congress a success.

• And to you, readers and participants, whose interest and enthusiasm made this event possible and the whole experience extremely rewarding and enriching.

ORGANISING COMMITTEE
VIII International Conference on Molten Slags, Fluxes and Salts - MOLTEN 2009
MOLTEN 2009 COMMITTEES

ORGANISING COMMITTEE

Chairman
Mario SÁNCHEZ, Hatch Ingenieros y Consultores Ltda., Chile

Honorary Chairmen
Carlos CABALLERO, North Division, Codelco Chile
Mario SEGUÉL, Compañía Siderúrgica Huachipato, Chile

Co-Chairmen
Kuo-Chih CHOU, Chinese Academy of Sciences / University of Science and Technology Beijing / Shanghai University, China
Mitsutaka HINO, Tohoku University, Japan
Florian KONGOLI, Flogen Technologies Inc., Canada
Jorge MADIAS, Metalurgia, Argentina
Petrus C. PISTORIUS, Carnegie Mellon University, USA
Ramana REDDY, The University of Alabama, USA
Seshadri SETHARAMAN, Royal Institute of Technology, Sweden
David YOUNG, University of New South Wales, Australia

Executive Director
Carlos BARAHONA, Gecamin Ltd., Chile

Event Coordinator
María Carolina PÉREZ, Gecamin Ltd., Chile

Marketing Coordinator
Paula LATORRE, Gecamin Ltd., Chile

INTERNATIONAL ADVISORY COMMITTEE

Omar AFRANGE, CARBOOX Resende Química Ind Com Ltda., Brazil
Rob BOOM, Corus Research Development and Technology, The Netherlands
Elena BRANDALÉE, Metalurgia, Argentina
Yolanda CATRILLEJO, University of Valladolid, Spain
Ken COLEY, McMaster University, Canada
Carlos DÍAZ, University of Toronto, Canada
Narbal DIETER, Industrial Diaco, Colombia
Abdel-Hady EL-GEASSY, Central Metallurgical Research & Development Institute (CMRDI), Egypt
Rauf Hurman ERIC, University of the Witwatersrand, South Africa
Pascale GARDIN, Arcelormittal Maizières Research SA., France
David GASKELL, Purdue University, USA
Marcelle GAUNE-ESCARD, Ecole Polytechnique, France
Bernard Gilbert, University of Liege, Belgium
Jouko Härkki, University of Oulu, Finland
Lauri Holappa, Helsinki University of Technology, Finland
Ivan Imris, Technical University of Kosice, Slovak Republic
Ivancho Ivanchev, University of Chemical Technology and Metallurgy, Bulgaria
Masanori Iwase, Kyoto University, Japan
Sharif Jahanshahi, CSIRO Minerals, Australia
Evgueni Jak, The University of Queensland, Australia
György Kaptay, University of Miskolc, Hungary
Ilkka Kojo, Outotec Oyj, Finland
Leiv Kolbeinsen, Norwegian University of Science and Technology (NTNU), Norway
Marian Kucharski, University of Science and Technology, Poland
Ivan Kurunov, OJSC, NLMK, Russia
Sergey Kuznetsov, Russian Academy of Science, Russia
Ashok Kumar Lahiri, Tata Steel, India
Hae-Gaon Lee, Pohang University of Science and Technology - POSTECH, Korea
Jean Lehmann, Arcelormittal Maizières Research SA, France
Leopoldo Mariscal, Southern Peru Copper Corporation, Peru
Phillip Mackey, Xstrata Process Support, Canada
Ken Mills, Imperial College of Science, United Kingdom
Ricardo Morales, UMSNH, Mexico
Kazuhiro Nagata, Tokyo Institute of Technology, Japan
Oleg Ostrovski, University of New South Wales, Australia
Alberto Passerone, National Research Council -IENI-CNR, Italy
Alberto Rabasedas, Ternium Siderar S.A., Argentina
Nobuo Sano, Nippon Steel Corporation, Japan
Piotr Scheller, Freiberg Technical University, Germany
Sridhar Seetharaman, Carnegie Mellon University, USA
Varadarajan Seshadri, Universidade Federal de Minas Gerais, Brazil
Volodymyr Shatokha, National Metallurgical Academy of Ukraine
H. Y. Sohn, University of Utah, USA
Michael Sudbury, Michael P. Sudbury Consulting Services Inc., Canada
Torsten Utigard, University of Toronto, Canada
Dio Uceda, Xstrata Zinc, Australia
Olle Wijk, Sandvik Materials Technology, Sweden
Xidong Wang, Peking University, China.
Jiayun Zhang, University of Science and Technology Beijing, China.
Michael Zinigrad, Ariel University Center of Samaria, Israel.
Dragana Zivkovic, University of Belgrade, Serbia.
LOCAL ADVISORY COMMITTEE
Jorge AHUMADA, Outotec Chile Ltda., Chile
Domingo CORDERO, Codelco Chile
Sergio DEMETRIO, SMELTEC S.A., Chile
Ivan FLORES, Compañía Siderúrgica Huachipato, Chile
Christian GOÑI, Universidad de Concepción, Chile
Carlos LANDOLT, Independent Consultant, Chile
Alfonso ÓTERO, Catholic University of Chile
Rafael PADILLA, Universidad de Concepción, Chile
Antonio PAGLIERO, Universidad de Concepción, Chile
José PALACIOS, University of Atacama, Chile
Fernando PARADA, Universidad de Concepción, Chile
Roberto PARRA, Universidad de Concepción, Chile
Gilberto RAIMANN, Empresa Nacional de Minería – ENAMI, Chile
Rodolfo REYES, EcoMetales Limited, Chile
German RICHTER, Ventanas Division, Codelco Chile
Gabriel RIVEROS, University of Chile
Marcelo VELASCO, Hatch Ingenieros y Consultores Ltda., Chile
Andrzej Warczok, University of Chile
Igor WILKOMIRSKY, Universidad de Concepción, Chile

EDITOrial COMMITTEE
Head Editors
Mario SÁNCHEZ, Hatch Ingenieros y Consultores Ltda., Chile
Roberto PARRA, Universidad de Concepción, Chile
Gabriel RIVEROS, University of Chile
Carlos DÍAZ, University of Toronto, Canada

Executive Editor
Maria Carolina PÉREZ, Gecamin Ltd.

EDITORIAL COMMITTEE
Technical Reviewers
Gerardo ALVEAR, Xstrata Technology Pty Ltd., Australia
Mansoor BARATI, University of Toronto, Canada
Somnath BASU, Tata Steel, India
James BENNETT, National Energy Technology Laboratory, USDOE, USA
Rob BOOM, CORUS Research Development & Technology, The Netherlands
Krzysztof BOROWIEC, Rio Tinto Iron & Titanium, Canada
Elena BRANDALEZE, Metalurgia, Argentina
Yolanda CATRILLEJO, University of Valladolid, Spain
Bai CHENGUANG, Chongqing University, China
Jung-Wook CHO, POSCO, Korea.
Kuo-Chih CHOU, University of Science & Technology Beijing, China
Ken Coley, McMaster University, Canada
Domingo Cordero, Codelco Chile
Carlos De Silva, Universidade Federal de Ouro Preto, Brazil
Sergio Demetrio, SMELTEC S.A., Chile
Narbal Dieter, Industrial Diaco, Colombia
Pegli Dong, Royal Institute of Technology, Sweden
Dirk Durinck, Katholieke Universiteit Leuven, Belgium
Abdel-Hady El-Geassy, Central Metallurgical Research & Development Institute (CMRDI), Egypt
Rauf Hurman Eric, University of the Witwatersrand, South Africa
Rasmus Fehrmann, Technical University of Denmark
Ivan Flores, Compañía Siderúrgica Huachipato, Chile
Sean Gaal, SINTEF Materials and Chemistry, Norway
Slobodan Gadjuric, University of Novi Sad, Serbia
Xinlei Ge, Royal Institute of Technology, Sweden
Kobus Geldenhuis, Nucor Steel, USA
Bernard Gilbert, University of Liege, Belgium
Christian Goñi, Universidad de Concepción, Chile
Qiu Guibao, Chongqing University, China
Muxing Guo, Katholieke Universiteit Leuven, Belgium
Masahito Hanao, Sumitomo Metal Industries Ltd., Japan
Jouko Härkki, University of Oulu, Finland
Hector Henao, The University of Queensland, Australia
Lauri Holappa, Helsinki University of Technology, Finland
Ivan Imris, Technical University of Kosice, Slovak Republic
Masanori Iwase, Kyoto University, Japan
Evgueni Jak, The University of Queensland, Australia
In-Ho Jung, McGill University, Australia.
Sung-Mo Jung, Pohang University of Science and Technology - POSTECH, Korea
Youngjo Kang, The University of Tokyo, Japan
Shin-Ya Kitamura, Tohoku University, Japan
Akihito Kiyose, Nippon Steel Corporation, Japan
Jeferson Klug, Universidade Federal do Rio Grande do Sul, Brazil
Ilkka Kojo, Outotec Oyj, Finland
Florian Kongoli, Flogen Technologies Inc., Canada
Jan Kromhout, CORUS RD&T, The Netherlands
Ivan Kurunov, OJSC, NLMK, Russia
Ashok Kumar Lahiri, Tata Steel, India
Carlos Landolt, Independent Consultant, Chile
Marcelo Velasco, Hatch Ingenieros y Consultores Ltda., Chile
Xidong Wang, Peking University, China
Igor Wilkomirsky, Universidad de Concepción, Chile
Steven Wright, CSIRO Minerals, Australia
Bing Xie, Chongqing University, China
Jiayun Zhang, University of Science and Technology Beijing, China
Ling Zhang, CSIRO Minerals, Australia
Baojun Zhao, The University of Queensland, Australia
Michael Zinigrad, Ariel University Center of Samaria, Israel
Dragana Zivkovic, University of Belgrade, Serbia

GRAPHIC DESIGNERS
Alicia Bonilla, Gecamin Ltd., Chile
Maria Paz Meza, Gecamin Ltd., Chile
Carolina Santana, Gecamin Ltd., Chile
Magdalena Serrano, Gecamin Ltd., Chile
ORGANISERS

MOLTEN 2009 Conference was hosted by the Metallurgical Engineering Department of the Universidad de Concepción and produced by Gecamin Ltd.

Metallurgical Engineering Department of the University of Concepción

The Metallurgical Engineering Department of the university of Concepcion was created on November 28, 1961 to form engineers for the promising Chilean copper industry of that time. Thus, the first metallurgical engineers came about in 1965 and to this date the number of metallurgical engineers formed amounts to over 600, which played a key role in the development of the extractive metallurgy of Chilean copper industry. Presently, the annual number of new graduates from this Department is about 30 professional Metallurgical Engineers, trained in 11 semesters which includes an undergraduate thesis work. The Department grants also a Master and Doctoral Degrees in Metallurgical Engineering. At present the research and development activities of the Department include areas such as mineral processing, pyrometallurgy, hydrometallurgy, electrometallurgy, and environmental aspects of mining operations. www.udec.cl

Gecamin Ltd.

GECAMIN Ltd. is a private company founded in 1998 in Santiago, Chile, with the purpose of designing, planning and producing technical events focused on technology innovations and process management in the mining and metallurgical industry. Gecamin strives to produce high quality events that position Chile as a centre of excellence for meetings on mining related topics.

GECAMIN is committed to efficiently serving the mining professionals by constantly monitoring the industry trends, detecting and satisfying the clients’ needs of technical knowledge exchange, through organising events that meet their highest expectations. This commitment is sustained through a quality management system based on the international ISO 9001:2000 standard.
GECAMIN aims to:

- Secure a leading position in the production of technical events for the mining industry
- Establish and maintain long term relationships with its employees, clients and suppliers based on mutual satisfaction and trust
- Generate a culture of constant innovation and search for excellence in its organisation
- Promote the exchange of knowledge and creation of collaborative technical networks between mining professionals worldwide
- Maintain the highest standards of customer satisfaction.

GECAMIN annually organises various international technical conferences, courses and seminars with attendance averaging 300 delegates each. The events calendar can be found at www.gecamin.cl