The Thermodynamics of Titanium in CaO-MgO-Al2O3-SiO2-TiOx Slags

Gabriella Tranell*, Oleg Ostrovski* and Sharif Jahanshahi**

* School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
Fax: (+612) 9385 5956

** G K Williams Cooperative Research Centre for Extractive Metallurgy, CSIRO - Division of Minerals, Box 312, Clayton South, Victoria 3169, Australia.
Fax: (+613) 9562 8919

ABSTRACT

The thermodynamics of titanium in CaO-SiO2-TiOx melts with additions of MgO or Al2O3 was investigated using a gas-slag equilibrium technique. The equilibrium experiments were carried out at temperatures between 1783 and 1903 K, under flowing CO-CO2-Ar gas atmosphere. The effects of oxygen potential (10^-12 to 10^-7 atm), CaO/SiO2 ratios (0.55 to 1.25) and titanium oxide content (7 to 21 wt%) on the titanium partitioning between different valency states and on the ratio of the activity coefficients of TiO1.5 and TiO2 were determined. The results obtained show that at a given temperature, the Ti3+/Ti4+ ratio decreases with increasing CaO/SiO2 ratio and/or oxygen potential. The additions of MgO to the slags resulted in a further decrease in the Ti3+/Ti4+ ratio. The dependence of Ti3+/Ti4+ on the oxygen potential showed departure from the ideal behaviour with the Ti3+/Ti4+ ratio being proportional to the oxygen potential raised to the power of 0.21 ± 0.01. Temperature was found to have a significant effect on the on the redox equilibria, with an associated enthalpy of about 152 ± 25 kJ/mole.

1. INTRODUCTION

Information on the properties of titanium containing silicate melts is rather limited. Publications on experimentally determined thermodynamic properties of titanium oxides cover the CaO-TiO2-Ti2O3 system with high (7-80 wt%) TiO2 concentrations,\(^1\) the complex CaO-SiO2-MgO-Al2O3-TiO2 system at very low TiO2 (~ 1 wt%) concentration,\(^2\) and a blast furnace slag containing up to 14 wt% TiO2.\(^3\) The composition dependence of activity of TiO2 in the binary FeO-TiO2 and MnO-TiO2 systems and the ternary FeO-TiO2-SiO2, CaO-MnO-TiO2 and SiO2-MnO-TiO2 systems have been determined\(^4\) using the Gibbs-Duhem equation.

The distribution of titanium between liquid metal and slag, as well as the partitioning between the Ti\(^{3+}\), Ti\(^{4+}\) and Ti\(^{2+}\) valency states in the slag, depends on the oxygen partial pressure, slag composition and temperature. Oxides containing Ti\(^{3+}\) cations are expected to demonstrate amphoteric properties while titanium oxides of the reduced Ti\(^{2+}\) and Ti\(^{4+}\) states, are expected to behave like bases\(^5\) and\(^6\). As such, slags containing titanium in different valency states will exhibit different physical and thermodynamic properties. This highlights the importance of accurate prediction of titanium partitioning between valency states.

Studies of the CaO-MgO-SiO2-Al2O3-TiO2 system and sub-systems\(^7,\,\,8,\,\,9\), have indicated that the Ti\(^{3+}\) - Ti\(^{4+}\) equilibria is described by the O-type redox reaction, which is common to a number of transition metals:

\[
\text{(TiO}_2\text{)}^{n+} = (\text{Ti}^{3+}) + \frac{1}{2} \text{O}_2 + 1/4 \text{O}_2(g) \quad .. \ [1]
\]

The present work was undertaken as part of an investigation into the redox behaviour of titanium in the CaO-SiO2-TiO2-MgO-Al2O3 system over a range of slag basicities, titanium oxide concentrations, oxygen partial pressures and temperatures. The results obtained to date and presented here are for CaO-SiO2-TiO2 melts with and without additions of Al2O3 or MgO.

2. EXPERIMENTAL

Titanium distribution between different valency states in calcium silicate based melts containing up to 21 wt% TiO2 was investigated by gas-slag equilibrium experiments. Master slags were prepared from high purity (>99.8%) CaO, SiO2, TiO2, Al2O3 and MgO by repeated melting and grinding. Twelve master slags with different CaO/SiO2 ratios (0.55, 0.7, 1.0 and 1.25) and three levels of TiO2 (7, 14 and 21 wt%) were prepared by melting appropriate amounts of reagents in platinum crucible at temperatures above their liquidus. Four other master slags (with 14 wt% TiO2 and a CaO/SiO2 ratio of about 0.7) containing Al2O3 or MgO content of 5 or 15 wt% were also prepared. The master slags were analysed by Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP-AES) prior to the experiments.

The gas atmosphere in the tube furnace was controlled by Ar-CO-CO2 gas mixtures flowing at about 1 l/min. For each experiment the required gas mixture was prepared by mixing appropriate amounts of purified Ar, CO and CO2 in a column of glass beads before delivering the gas mixture to the furnace. The gases were purified by passing them through oxygen getter furnace, containing copper turning or titanium granules, and silica gel for removing moisture. In the case of Ar and CO2, they were also also passed through Ascarite to remove CO2. The flow rates of gases were controlled using pre-calibrated mass flow meters. For the preparation of mixtures with high CO/CO2 ratios, a pre-mixed bottle of Ar-3%CO2 was used instead of pure CO2 and the composition of the final...
The equilibrium experiments were carried out in a vertical MoS_2 furnace fitted with water cooled brass end caps to isolate the atmosphere inside the alumina work tube. The temperature of the hot zone was measured by a Pt-6%Rh/Pt-30%Rh thermocouple touching the bottom of the crucible containing the slag. The accuracy of the temperature measurements was estimated to be within 5 K.

At oxygen partial pressures between 10^7 and 10^9 atm, a platinum crucible was used to contain the slag. At oxygen potentials of 10^{10} atm (CO/CO_2 ratio of about 34 and higher at 1843 K) and lower thick walled molybdenum crucibles were used, as the platinum crucible became brittle.

For each experiment about 4 g of the slag was placed in a crucible which was lowered into the hot zone of the furnace as the reducing gases were turned on. After the desired reaction period, the sample was quickly withdrawn from the furnace and quenched by immersing the bottom portion of the crucible into water. Care was taken to avoid direct contact between the slag and water.

The quenched slag sample was then analysed by ICP-AES for major components. The total amount of reduced titanium (Ti^{3+} and Ti^{2+}) in the slags was determined by a modified version of an indirect potentiometric redox titration method. This scheme involved dissolution of the slag in HF-HCl-H_2O solution with excess Fe^{3+}, under an argon atmosphere. The reduced titanium is oxidised by the ferric ions through the reaction:

\[xTi^{3+} + yTi^{2+} + (x+2y)Fe^{3+} = (x+y)Ti^{4+} + (x+2y)Fe^{2+} \] \[\text{(2)} \]

Following dissolution, the resulting Fe^{2+} solution was titrated with standardised 0.005M ceric sulphate solution, using ferrous 1,10-phenanthroline (ferroin) as a buffer. This method has a detection limit of approximately 10^{-9} moles of reduced titanium and an absolute error of ±5% of the detected amount. The quantity of titanium in the Ti^{4+} valency state was calculated as the difference between total and reduced titanium. Since under the present experimental conditions, the concentration of Ti^{2+} is likely to be relatively low in comparison with the Ti^{3+}, all reduced titanium is reported as Ti^{3+}.

Two series of kinetic experiments were carried out to determine the time required for approaching equilibrium between gas and slag. In one of these series a master slag with CaO/SiO_2 ratio of 0.55 and 21 wt% TiO_2 was reacted with Ar-CO-CO_2 (CO/CO_2 = 10.7) at about 1843 K for 4, 6 and 11 hrs. In the second series the same slag was reduced by a more reducing gas mixture (CO/CO_2 ≥ 456) for 4, 6 and 18 hrs at 1843 K. The results from the first series showed that equilibrium was approached after 4 hrs. For the second series, it was found that 6 hrs was sufficient to approach equilibrium at 10^{12} atm. On the basis of these results an equilibration time of 6 hrs was used for oxygen potentials of 10^{13} to 10^{17} atm and 8 hrs for 10^{17} atm.

3. RESULTS AND DISCUSSION

3.1 Effect of temperature

In silicate based melts, the enthalpy of reduction of redox reactions is generally within the range of 42-293 kJ/mol. The reduction of TiO_2 is endothermic, and increasing the reaction temperature should stabilise the Ti^{3+} oxidation state. Figure 1 shows the typical variation of the log (Ti^{3+}/Ti^{4+}) with the reciprocal of temperature from this and other studies. It is evident that for a given oxygen potential, increasing the temperature results in stabilisation of the lower oxidation state of titanium.
\[
\log \left(\frac{\mathrm{Ti}^{3+}}{\mathrm{Ti}^{4+}} \right) = \frac{-\Delta H}{2.303R} \left(\frac{1}{T} \right) + C \quad [4]
\]

where; \(R \) is the gas constant, \(T \) is the absolute temperature, and \(C \) is a constant which is assumed to be independent of the temperature.

The reduction enthalpy calculated from the results of the present study is about 152 ± 25 kJ/mole and appears to be independent of the slag basicity. This value lies between those determined by Tanabe and Suito\(^2\) (104 ± 12 kJ/mol) and Schreiber \textit{et al.}\(^{11}\) (293 ± 96 kJ/mol). The differences between the experimentally determined \(\Delta H \) values may be attributed to differences in the \(\gamma_{\text{TiO}_1.5}/\gamma_{\text{TiO}_2} \) ratio for different slag compositions, as discussed by Mysen\(^{15}\). It is interesting to note that the enthalpy of reduction appears to increase as the concentration of TiO\(_x\) in the slag decreases.

3.2 Effects of oxygen potential and slag chemistry

According to reaction [3], if the \(\gamma_{\text{TiO}_1.5}/\gamma_{\text{TiO}_2} \) is not affected by oxygen potential (\(p_{O_2} \)), then a plot of \(\log \left(\frac{\mathrm{Ti}^{3+}}{\mathrm{Ti}^{4+}} \right) \) versus \(\log \left(p_{O_2} \right) \) should yield a straight line with a slope of -0.25. This relationship has been experimentally investigated by a number of researchers\(^{1,2,11}\) and the slope has been found to lie between -0.25 and -0.20. The results from the present study, for the CaO-SiO\(_2\)-14 wt% TiO\(_x\) system at \(p_{O_2} \) in the range 10\(^{-12}\) to 10\(^{-7}\) atm, are illustrated in Figure 2. The \(\mathrm{Ti}^{3+}/\mathrm{Ti}^{4+} \) ratios for \(p_{O_2} = 10^{-12} \) atm were determined at 1873 K and re-calculated at 1843 K, using the experimentally determined reduction enthalpy. In Figure 2 all lines, which are plotted for different CaO/SiO\(_2\) ratios, have slopes close to -0.21. The deviation from the slope of -0.25 indicates that the \(\gamma_{\text{TiO}_1.5}/\gamma_{\text{TiO}_2} \) ratio is affected by the Ti\(^{3+}/\mathrm{Ti}^{4+} \) partitioning which, in turn, is determined by the oxygen potential.

![Figure 2. Variation of the \(\mathrm{Ti}^{3+}/\mathrm{Ti}^{4+} \) ratio with oxygen potential in CaO-SiO\(_2\)-TiO\(_x\) melts at 1843 K.](image)

Although this departure from ideal behaviour has been observed in other systems containing transition metal oxides such as FeO\(_x\) and MnO\(_x\), it is of interest to examine the variation of the \(\gamma_{\text{TiO}_1.5}/\gamma_{\text{TiO}_2} \) with oxidation state of the slag or in particular the concentration of the TiO\(_{1.5}\). In Figure 3, the calculated values of \(\gamma_{\text{TiO}_1.5}/\gamma_{\text{TiO}_2} \) over a narrow temperature range (1843 to 1873 K) are plotted against the concentration of TiO\(_{1.5}\). It is evident that when the concentration of TiO\(_{1.5}\) is greater than 2 wt%, the \(\gamma_{\text{TiO}_1.5}/\gamma_{\text{TiO}_2} \) ratio is virtually independent of the concentration of TiO\(_{1.5}\) or the oxidation state of melts. However, the dependence on the TiO\(_{1.5}\) concentration appears to become more pronounced at lower TiO\(_{1.5}\) contents and higher slag basicity. This apparent dependence is likely to be influenced by the analytical errors in the determination of very low concentrations of Ti\(^{3+}\). Ignoring the apparent sharper dependence at very low TiO\(_{1.5}\) content, then the relatively mild dependence is not unreasonable, specially when the small effect of temperature differences is taken into consideration.

![Figure 3. Variation of \(\gamma_{\text{TiO}_1.5}/\gamma_{\text{TiO}_2} \) ratio with concentration of TiO\(_{1.5}\) in CaO-SiO\(_2\)-TiO\(_x\) slags at 1843 to 1873 K.](image)
possible explanation for this non-linear dependence might be the formation of more complex anions at high TiO\textsubscript{x} concentrations20-23, such as Ti\textsubscript{2}O\textsubscript{7}6- and Ti\textsubscript{2}O\textsubscript{8}4- rather than TiO\textsubscript{4}^4-.

Figure 4. Variation of the Ti3+/Ti4+ ratio in CaO-SiO\textsubscript{2}-TiO\textsubscript{x} melts with CaO/SiO\textsubscript{2} ratio for slags containing 14 wt\% TiO\textsubscript{x} at various oxygen potentials.

Figure 5. Variation of the Ti3+/Ti4+ ratio in CaO-SiO\textsubscript{2}-TiO\textsubscript{x} melts with CaO/SiO\textsubscript{2} ratio for slags containing 7, 14 and 21 wt\% TiO\textsubscript{x} at an oxygen potential of 10^{-12} atm and 1873 K.

It was shown in Figure 3 that the $\gamma_{\text{TiO}_1.5}/\gamma_{\text{TiO}_2}$ ratio increases with increasing slag basicity. This behaviour was observed at all TiO\textsubscript{x} concentrations and CaO/SiO\textsubscript{2} ratios studied. This differ from the findings of Ito and Sano3, where it was found that both TiO\textsubscript{2} and TiO\textsubscript{1.5} behave as bases in CaO-SiO\textsubscript{2}-10\%Al\textsubscript{2}O\textsubscript{3}-2\%TiO\textsubscript{x} melts with CaO/SiO\textsubscript{2} ratios below one. At CaO/SiO\textsubscript{2} ratios above one, TiO\textsubscript{1.5} still behaved as a base while TiO\textsubscript{2} acts as an acidic oxide. The $\gamma_{\text{TiO}_1.5}/\gamma_{\text{TiO}_2}$ ratio was found to decrease with increasing slag basicity at a CaO/SiO\textsubscript{2} ratio below one and increase when the slag basicity was above one.

Figure 6. Dependence of Ti3+/Ti4+ ratio on the additions of Al\textsubscript{2}O\textsubscript{3} and MgO to CaO-SiO\textsubscript{2}-14\%TiO\textsubscript{x} slag at different temperatures and oxygen potentials.

In Figure 6 the measured effects of MgO and Al\textsubscript{2}O\textsubscript{3} to the CaO-SiO\textsubscript{2}-14\%TiO\textsubscript{x} based slags are shown at two oxygen potentials and temperatures. Additions of MgO decreased the Ti3+/Ti4+ ratio, indicating that introduction of MgO to the slag with CaO/SiO\textsubscript{2} ratio of 0.7 results in increased basicity of the slag and hence stabilising the higher oxidation state of titanium. The experimental results for Al\textsubscript{2}O\textsubscript{3} additions are scattered; it may be suggested that the effect of Al\textsubscript{2}O\textsubscript{3} on the Ti3+/Ti4+ ratio is relatively small.

Figure 7. Variation of log (Ti3+/Ti4+) with the calculated optical basicity for slags containing 14\% TiO\textsubscript{x} over a range of oxygen potentials (10^{-10} to 10^{-7} atm at 1843K; 10^{-12} atm at 1873 K).

To analyse the effect of slag composition on the titanium Ti3+ - Ti4+ partitioning, the Ti3+/Ti4+ ratio was examined as a function of slag optical basicity, A. The
optical basicities for various slags were calculated using A values for the individual oxides recommended by Young et al. The optical basicity for TiO\textsubscript{2} is unknown; based on the calculation of the electronegativity of oxygen in TiO\textsubscript{2}, it was estimated to be about 0.76. The same approach for TiO\textsubscript{2} gave an optical basicity of 0.60, compared to the 0.65 value recommended by Young et al.

In Figure 7, typical variations of log (Ti3+/Ti4+) with the calculated optical basicity are presented for slags at different oxygen potentials. While the variation of log (Ti3+/Ti4+) with the calculated A for these slags does not appear to follow a linear dependence, as an approximation a value of about -6.2 may be taken to represent the average slope. Combining this with the measured dependence of Ti3+/Ti4+ ratio on oxygen potential and temperature, the following correlation was obtained for calculation of the titanium distribution between Ti3+ and Ti4+ valency states:

\[
\log(\text{Ti}^{3+}/\text{Ti}^{4+}) = 5.17 - 0.21 \log(p_{O_2}) - 7940/T - 6.2A \\
\]

Figure 8. Comparison of the measure and calculated values of Ti3+/Ti4+ ratios.

As shown in Figure 8, equation [5], gives a reasonably good representation of the data obtained in the present study. Experimental results obtained by Schreiber et al. and Tanabe and Suito show some deviation from the calculated data. These deviations are partly due to the differences in the measured effect of temperature on the Ti3+/Ti4+ ratio, as shown in Figure 1 and discussed in section 3.1.

CONCLUSIONS

Equilibrium data on the Ti3+-Ti4+ redox reaction in CaO-SiO\textsubscript{2}-TiO\textsubscript{2} melts containing up to 21 wt% TiO\textsubscript{2} shows that the Ti3+/Ti4+ ratio increases with decreasing oxygen potential and CaO/SiO\textsubscript{2} ratio. Over the temperature range of 1783 to 1903 K, the apparent enthalpy of the reduction reaction for slags containing 14% TiO\textsubscript{2} was found to be about 152 \pm 25 kJ/mole and independent of slag basicity.

The dependence of the Ti3+/Ti4+ on the oxygen potential showed some deviation from ideal behaviour in slags containing 7 to 21 wt% TiO\textsubscript{2} and CaO/SiO\textsubscript{2} ratios in the range 0.55 to 1.25. This small departure resulted in mild variation of the \(\gamma_{TiO_2}/\gamma_{TiO_2} \) ratio with oxygen potential. The \(\gamma_{TiO_2}/\gamma_{TiO_2} \) ratio increased from about 3 to 10 as the CaO/SiO\textsubscript{2} ratio was increased from 0.55 to 1.25.

Increasing the TiO\textsubscript{2} content from 7 to 14% resulted in a reduction in the Ti3+/Ti4+ ratio, while further addition of TiO\textsubscript{2} (21 wt%) did not follow the same trend. This behaviour suggests the possibility of formation of more complex titania anions such as Ti\textsubscript{2}O\textsubscript{6} in high titania slags.

While additions of up to 15 wt% MgO to the slags with CaO/SiO\textsubscript{2} ratio of 0.7, resulted in a reduction in the Ti3+/Ti4+ ratio at a given temperature and oxygen potential, addition of Al\textsubscript{2}O\textsubscript{3} did not show a significant effect.

The measured effects of slag chemistry on the titanium partitioning between different valency states could be reasonably well correlated with the calculated optical basicity of slags.

ACKNOWLEDGMENT

The authors wish to acknowledge Drs. Ivan Ratchev and Shouyi Sun for useful discussion and suggestions. Financial support for this work was provided by the Australian Research Council and the Australian Government Cooperative Research Centres Program through the G. K. Williams Cooperative Research Centre for Extractive Metallurgy, a joint venture between the CSIRO Division of Minerals and the Department of Chemical Engineering, the University of Melbourne.

REFERENCES

4. R. Benesch, A. Ledzki, R. Kopec and R. Stachura, “Equilibrium of Reduction of Titanium Oxides from Blast-furnace Type Slags of the CaO-MgO-SiO\textsubscript{2}–

