European waste to product concepts – iron-based alloys from electric arc furnaces

B. Friedrich¹, B.S. Xakalashe¹, H. Lucas¹, M. Köneke², and D. Offenthaler³

¹IME Institute of Metallurgy and Metal Recycling, RWTH Aachen University, Aachen, Germany
²SMS group GmbH, Düsseldorf, Germany
³Batrec Industrie AG, Wimmis, Switzerland

Abstract – Large amounts of waste materials or by-products are generated from the metallurgical industry. Furthermore, end-of-life consumer goods such as batteries and municipal waste add to this burden. These waste streams pose a great environmental risk and are simultaneously a potential resource for value extraction. The resource-poor Europe is in pursuit of technical and business strategies, and policy instruments, in favour of sustainability. In 2015, the European Commission published a circular economy package with a goal to minimize waste, and to increase energy and resource efficiency within the EU, for sustainable growth. This paper looks at European strategies for a circular economy and a zero-waste approach, applied to iron-based alloys leaning towards ferro-alloys, covering both primary and secondary resources.

Electric arc furnaces (EAFs) are identified as best available technologies for primary production of a majority of the ferro-alloys, as well as in some cases for ferro-alloys recovery from waste streams. Examples of EAF/SAF-based production of iron-based alloys leaning towards ferro-alloy production covered in this paper include FeMn40 (Batrec), FeSi20 (Conti arc), Fe90 (Redmud), Fe90 (Bottom ash), and SAF treatment of Zn-containing flue dust for pig iron production and Zn recovery. An outlook to new EAF centres in Europe centralising waste treatment/blending is provided. The close co-operation between researchers from university and experienced industry engineers is key to application-based R&D and to optimization of industrial processes. With such co-operation, developments covering the entire size spectrum from lab- and technical-scale up to pilot- and industry size research may be realised.

Keywords: electric arc furnaces, waste-treatment, zero-waste, ferro-alloys, circular economy

Prof. Bernd Friedrich
Head of the Institute of Process Metallurgy and Metal Recycling (IME), RWTH Aachen University

Prof. Dr.-Ing. Dr. h.c. Bernd Friedrich studied non-ferrous metallurgy at the RWTH Technical University of Aachen. From 1984 to 1987, he worked as an assistant professor at IME, RWTH Aachen. In 1988, he defended his PhD thesis titled "Electrolytic refining of recycling-tin using three-dimensional-electrodes". From 1988 to 1992, Dr Friedrich worked as the head of the R&D department, and from 1992 to 1995 as a head of the profit centre 'Hydride-technology and smarts materials' at GFE, Nürnberg, Germany. From 1995 to 1999, he was plant manager NiCd/NiMH at Varta Batterie AG in Hagen, Germany, and Ceska Lipa, Czech Republic. In 1999, Professor Friedrich became the head of IME Process Metallurgy and Metal Recycling, chair and department of the RWTH Technical University of Aachen. In 2011 he was awarded with an honorary doctorate title by the Technical University in Donetsk in Ukraine. Professor Friedrich is a principal
investigator with extensive experience in R&D of hydrometallurgy and pyrometallurgy. He has supervised two habilitations and up to now 80 doctoral theses. He was named the EIT KIC raw materials representative for RWTH Aachen University and the German state of North-Rhine-Westphalia. He has authored and co-authored more than 500 publications in journals and conferences. 
https://www.researchgate.net/profile/Bernd_Friedrich