Particle Solubility and Delivery of Inhaled Manganese to the Rat Brain: Manganese Sulfate and Manganese Tetroxide Pharmacokinetics Following Repeated (14-Day) Exposure

Chemical Industry Institute of Toxicology, Research Triangle Park, NC.

ABSTRACT

Dissolution rate can influence the pulmonary clearance of a metal and thus affect its delivery to the brain and other organs. The goal of this study was to determine the exposure-response relationship for the relatively soluble sulfate (MnSO₄) and insoluble tetroxide (Mn₃O₄) forms of inhaled manganese in adult male CD rats. Rats were exposed 6 hr/day for 7 days/week (14 exposures) to either MnSO₄ or Mn₃O₄ at 0, 0.03, 0.3, or 3 mg Mn/m³. End-of-exposure olfactory bulb, striatum, cerebellum, bile, lung, liver, femur, serum, and testes manganese concentrations and whole-body ⁵⁴Mn elimination rates were then determined. Increased whole-body ⁵⁴Mn clearance rates were observed in animals from the high-dose (3 mg Mn/m³) MnSO₄ and Mn₃O₄ exposure groups. Elevated manganese concentrations in the lung were observed following MnSO₄ and Mn₃O₄ exposure to ≥ 0.3 mg Mn/m³. Increased olfactory bulb and femur manganese concentrations were also observed following MnSO₄ exposure at ≥ 0.3 mg Mn/m³. Elevated striatal, testes, liver, and bile manganese concentrations were observed following exposure to MnSO₄ at 3 mg Mn/m³. Elevated olfactory bulb, striatal, femur, and bile manganese concentrations were observed following exposure to Mn₃O₄ at 3 mg Mn/m³. Animals exposed to MnSO₄ (3 mg Mn/m³) had lower lung and higher olfactory bulb and striatal manganese concentrations when compared with levels achieved following similar Mn₃O₄ exposures. Our results suggest that inhalation exposure to soluble forms of manganese results in higher brain manganese concentrations than those achieved following exposure to insoluble forms of manganese.